14,049 research outputs found

    Calibrated Sub-Bundles in Non-Compact Manifolds of Special Holonomy

    Full text link
    This paper is a continuation of math.DG/0408005. We first construct special Lagrangian submanifolds of the Ricci-flat Stenzel metric (of holonomy SU(n)) on the cotangent bundle of S^n by looking at the conormal bundle of appropriate submanifolds of S^n. We find that the condition for the conormal bundle to be special Lagrangian is the same as that discovered by Harvey-Lawson for submanifolds in R^n in their pioneering paper. We also construct calibrated submanifolds in complete metrics with special holonomy G_2 and Spin(7) discovered by Bryant and Salamon on the total spaces of appropriate bundles over self-dual Einstein four manifolds. The submanifolds are constructed as certain subbundles over immersed surfaces. We show that this construction requires the surface to be minimal in the associative and Cayley cases, and to be (properly oriented) real isotropic in the coassociative case. We also make some remarks about using these constructions as a possible local model for the intersection of compact calibrated submanifolds in a compact manifold with special holonomy.Comment: 20 pages; for Revised Version: Minor cosmetic changes, some paragraphs rewritten for improved clarit

    IN-FLIGHT SHOCK-WAVE PRESSURE MEASUREMENTS ABOVE AND BELOW A BOMBER AIRPLANE AT MACH NUMBERS FROM 1.42 TO 1.69

    Get PDF
    In-flight shock wave pressure measurements above and below bomber aircraft at mach 1.42 to 1.6

    Neighborhoods of trees in circular orderings

    Get PDF
    In phylogenetics, a common strategy used to construct an evolutionary tree for a set of species X is to search in the space of all such trees for one that optimizes some given score function (such as the minimum evolution, parsimony or likelihood score). As this can be computationally intensive, it was recently proposed to restrict such searches to the set of all those trees that are compatible with some circular ordering of the set X. To inform the design of efficient algorithms to perform such searches, it is therefore of interest to find bounds for the number of trees compatible with a fixed ordering in the neighborhood of a tree that is determined by certain tree operations commonly used to search for trees: the nearest neighbor interchange (nni), the subtree prune and regraft (spr) and the tree bisection and reconnection (tbr) operations. We show that the size of such a neighborhood of a binary tree associated with the nni operation is independent of the tree’s topology, but that this is not the case for the spr and tbr operations. We also give tight upper and lower bounds for the size of the neighborhood of a binary tree for the spr and tbr operations and characterize those trees for which these bounds are attained

    PHYCOERYTHROCYANINS FROM Westiellopsis prolifica AND Nostoc rivulare: CHARACTERIZATION OF THE PHYCOVIOLOBILIN CHROMOPHORE IN BOTH STATES

    Get PDF
    Phycoerythrocyanin or fractions enriched in it have been isolated from the filamentous cyanobacteria, Westiellopsis prolifica ARM 365 and Nostoc rivulare ARM 212. Both show the photoreversible photochromism (difference maxima at 503 and 570 nm) characteristic of this pigment, which is related to the phycoviolobilin chromophore on the α-subunit. Native phycoerythrocyanin and its ÎČ-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores absorb maximally. Instead the phycocyanobilin chromophores are bleached irreversibly. At the same time, the data show that reversible photochemistry is a useful analytical tool to detect phycoerythrocyanin in cyanobacterial extracts. Fluorescence measurements indicate that: (i) the 510 nm absorbing isomer of the violobilin chromophore has only little fluorescence; and (ii) the energy transfer from the violobilin chromophores to the cyanin chromophores is efficient only in the 570 nm form

    Explaining the Longitudinal Association Between Puberty and Depression: Sex Differences in the Mediating Effects of Peer Stress

    Get PDF
    This research investigated whether exposure to peer stress serves as one pathway through which pubertal development contributes to depression over time, differentially for girls and boys. Youth (N = 149; 9.6–14.8 years) and their caregivers provided information at two waves, 1 year apart, on puberty (Wave 1), peer stress (occurring between Waves 1 and 2), and depression (Waves 1 and 2). Structural equation modeling analyses examined sex differences in the extent to which peer stress mediated the impact of pubertal status and timing on subsequent depression (i.e., tests of moderated mediation). Significant sex-moderated mediation was found for both pubertal status and timing. As indicated by moderate effect proportions, in girls, heightened peer stress partially mediated the longitudinal association between (a) more advanced pubertal status and depression; and (b) linear, but not curvilinear, pubertal timing (i.e., earlier maturation) and depression. This research contributes to our growing understanding of the interplay among physical, psychological, and social processes involved in the sex difference in adolescent depression

    Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings

    Full text link
    We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element (FEM) simulations of the Stokes equations for assemblies of 8 to 200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients

    Kaehler Manifolds of Quasi-Constant Holomorphic Sectional Curvatures

    Full text link
    The Kaehler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kaehler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kaehler metrics into Kaehler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kaehler metrics is shown to be exactly the class of Kaehler metrics whose potential function is only a function of the distance from the origin in complex Euclidean space. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kaehler structure, which is of quasi-constant holomorphic sectional curvatures.Comment: 36 page

    Simulation Study of a Follow-on Gravity Mission to GRACE

    Get PDF
    The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing
    • 

    corecore